
Спектрофотометры СФ-102, СФ-104

НПО ИНТЕРФОТОФИЗИКА

Фотометрические методы анализа являются одними из основных в аналитической химии. Поэтому спектрофотометр — неотъемлемая часть каждой химической аналитической лаборатории. Наличие спектрофотометра в аккредитованной лаборатории — обязательное условие.

Спектрофотометрический метод анализа основан на селективности <mark>погло-</mark> щения молекулами веществ излучения в видимой, инфракрасной и ультрафиолетовой областях спектра. Исследуемый образец может находиться как в твёрдом, так и в жидком или газообразном состоянии. Концентрация исследуемого вещества в анализируемой пробе прямо пропорциональна величине селективного поглощения. Наиболее широко распространено определение концентрации веществ в растворах.

Области применения

онды

- выполнение измерений массовой концентрации вредных токсичных веществ и тяжелых металлов в воде природной и сточной;
- агрохимический анализ, анализ удобрений, кормов, комбикормов, комбикормового сырья, определение азота, фосфора, витаминов, токсичных и тяжелых металлов;
- выполнение измерений массовой концентрации белков, витаминов, углеводов, вредных токсичных веществ и тяжелых металлов в пищевых продуктах (молоко, сыры, мясо, алкогольные и безалкогольные напитки);
- анализ почв, грунтов, донных отложений, осадков сточных вод и твердых сыпучих материалов, выполнение измерений массовой концентрации биогенов, металлов, вредных токсичных веществ;
- выполнение измерений массовой концентрации вредных и токсических веществ в промышленных выбросах;
- санитарно-гигиенический анализ: контроль содержания вредных веществ на кожных покровах и спецодежде, воздуха рабочей зоны и многое другое.

Преимущества

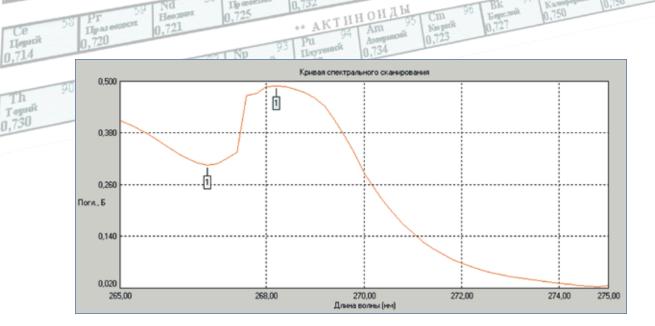
Спектрофотометры СФ-102 и СФ-104 созданы с учетом современных требований аккредитованных лабораторий к эффективной работе оборудования. Основные преимущества спектрофотометров СФ-102 и СФ-104:

оптическая схема с опорным оптическим каналом, известная также, как «сплит-бим» или «оптическая схема с расщепленным лучом». Данная схема позволяет уменьшить до минимальных значений возможные погрешности измерений связанные с шумами. Такая конструкция позволяет использовать лучшие стороны одно- и двухлучевой оптических схем;

выделяемый спектральный интервал («ширина щели») **2 нм и 3 нм** соответственно;

автоматический держатель на 8 стандартных кювет или на 5 кювет с увеличенным оптическим путем;

возможность работы, как в автономном режиме, так и под управлением ПК.


Спектрофотометры просты в обращении, ими легко управлять как с клавиатуры панели управления прибора, так и с помощью подсоединенного персонального компьютера (программа управления спектрофотометром и обработки результатов измерений входит в комплект поставки спектрофотометра СФ-102 поставляется опционно)

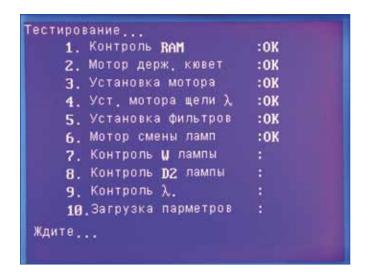
Преимущества спектрального разрешения в 2 нанометра

Спектрофотометры полностью соответствуют условиям стандарта по спектральному разрешению, который предписан Европейской фармакопеей. По требованиям Европейской фармакопеи соотношение между величиной поглощения для пика в области около 269нм и величиной поглощения во впадине в области около 266нм для раствора толуола в гексане должно

быть больше 1,5. Для спектрофотометра СФ-104 (выделяемый спектральный интервал 2нм) это соотношение равно 1,59 (приведенный на рисунке график построен с использованием программного обеспечения UVWin). Для спектрофотометра СФ-102 (выделяемый спектральный интервал 3нм) это соотношение равно 1,6.

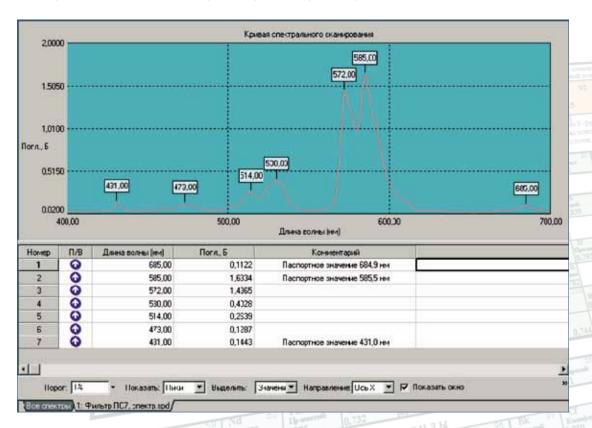
Номер	Пик/Впадина	Длина волны, нм	Значение поглощения, Б	
1	Пик	268,20	0,490	
1	Впадина	266,80	0,306	

Автоматические функции тестирования (валидация)


При использовании программного обеспечения UVWin, пользователю становится доступна функция валидации прибора. С помощью автоматизированной функции валидации и при

использовании светофильтров Hellma, возможна полная проверка работоспособности прибора, по всем заявленным производителем параметрам.

Автоматическая проверка работоспособности


При каждом включении спектрофотометр проходит процесс тестирования, проверку готовности к работе всех систем спектрофотометра (электроника, оптика, механическая часть). Поэтапность проведения процесса тестирования позволяет выявить источник неисправности и своевременно устранить ее. Прохождение процесса тестирования при каждом включении спектрофотометра гарантирует правильность проведения измерений.

Тестирование точности установки длины волны

Тестирование точности установки длины волны проводится с использованием набора оптических фильтров

КС-105 (Рисунок показывает спектр и результаты детектирования пиков для фильтра ПС7).

Ш

Автоматический держатель кювет

В стандартной комплектации спектрофотометры оснащены держателями кювет на восемь или пять позиций. Управление держателем производится автоматически. Одновременно возможно проведение измерений до восьми (пяти) исследуемых образцов. Предусмотрена возможность постоян-

ной коррекции проводимых измерений относительно нулевого раствора. При работе с фармпрепаратами две позиции держателя кювет будут отведены под необходимые стандартный и нулевой растворы. Все действия с держателем кювет по проведению измерений автоматизированы.

Низкий уровень шума и высокое разрешение позволяют использовать кюветы с большим оптическим путем

(до 100мм) и получить результат с гарантированным качеством.

Отделение для дейтериевой и галогеновой ламп выполнено таким образом, чтобы упростить уста-

новку и смену ламп и исключить при этом ошибки оператора.

Режимы работы

Спектрофотометрический анализ подразумевает наличие нескольких стандартных режимов работы спектрофотометра и иногда специальных режимов:

- фотометрический
- количественного анализа
- спектрометрический
- кинетический
- настройки

Фотометрический. В этом режиме проводятся измерения величин поглощения, пропускания или отражения образца, на определенной выбранной одной длине волны или на нескольких длинах волн. Последовательно можно провести измерения до 8 образцов. Результаты измерений могут быть распечатаны на термопринтере

(при автономной работе спектрофотометра), сохранены в файл (при работе спектрофотометра под управлением компьютера и программного обеспечения UVWin) или записаны пользователем в журнал.

Режим доступен для СФ-102 и СФ-104, без использования программного обеспечения.

Количественный анализ. Отличается от фотометрического возможностью получения результата в единицах концентрации. Для определения концентрации используются два метода: метод коэффициентов и метод с построением градуировочной зависимости (кривой).

Режим доступен для СФ-102 с программной картой режима количественного анализа (эта программная карта входит в комплект поставки) и для СФ-104, без использования программного обеспечения.

Спектрометрический. Этот режим позволяет измерять величины поглощения, пропускания или отражения образца, а также энергию измерительного канала и энергию опорного канала в заданном диапазоне длин волн.

Режим доступен для СФ-102 с программной картой спектрометрического/кинетического анализа и для СФ-104, без использования программного обеспечения.

Кинетический. Данный режим позволяет регистрировать изменения величины пропускания, поглощения или отражения образца с течением времени.

Режим доступен при работе спектрофотометров под управлением программного обеспечения. Для СФ-102 режим также доступен при наличии программной карты спектрометрического/кинетического анализа.

Специальные режимы работы (режим «ДНК/Белок»). Режим «ДНК/Белок» позволяет измерять концентрацию ДНК (РНК) в присутствии белков и измерять концентрацию белков в присутствии ДНК (РНК). В системе заложено два нередактируемых стандартных метода и один настраиваемый пользователем метод.

Режим доступен для СФ-102 с программной картой режима «ДНК/Белок» и для СФ-104, без использования программного обеспечения.

Настройки прибора. В этом режиме производится настройка прибора для его дальнейшей корректной работы. Можно установить такие параметры, как длина волны смены ламп, включение и отключение дейтериевой или галогенной лампы, коррекция установки длины волны, установка даты и времени, включение и выключение управления от компьютера и другие параметры.

Все перечисленные режимы доступны при работе спектрофотометров под управлением программного обеспечения UVWin с использованием персонального компьютера.

Ш

Программное обеспечение UVWin

Программное обеспечение UVWin предназначено для управления спектрофотометрами СФ-102 и СФ-104 с помощью персонального компьютера.

Позволяет наиболее полно и эффективно использовать все возможности спектрофотометров.

Является мощным математическим инструментом, предназначенным для сбора, обработки и хранения полученных данных.

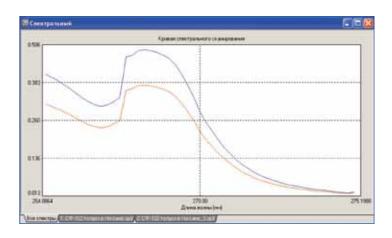
трам и, в зависимости от установленных пользователем действий, процесс измерений будет приостановлен или продолжен. В отчете будут отражены параметры и результаты проведенных измерений.

На следующем рисунке показан пример работы спектрофотометра под управлением UVWin в фотометрическом режиме.

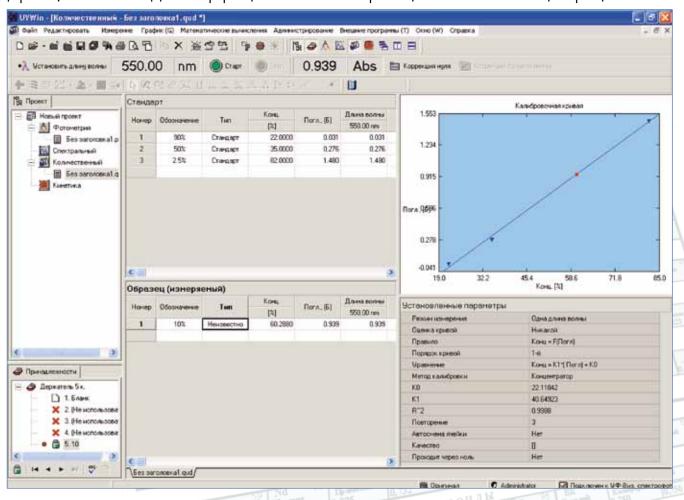
Произведено измерение светофильтров из стекла КУВИ со значением про-

Набор программных модулей, настроенных в привычном интерфейсе Windows, включает в себя функвсех режимов ЦИИ анализа — фотометрического (в том числе многоволнового), количественного, спектрометрического, кинетического, - управнастройками ление спектрофотометра, генератор отчетов и режим валидации.

При проведении из-

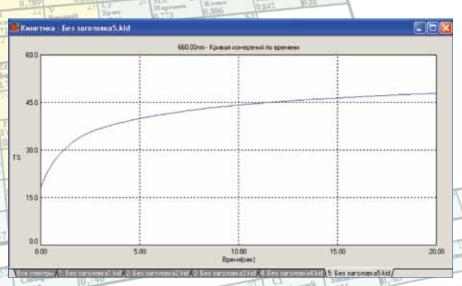

мерений с использованием программного обеспечения UVWin, пользователь имеет возможность установки критериев оценки получаемых результатов. В автоматическом режиме будет произведена оценка результатов на соответствие установленным параме-

пускания 90%, 50%, 10% и 2,5% (комплект светофильтров КС-105). Измерения проводились трижды, на паспортных длинах волн рабочего диапазона спектрофотометра (1100нм, 700нм, 550нм, 400нм, 300нм, 220нм).

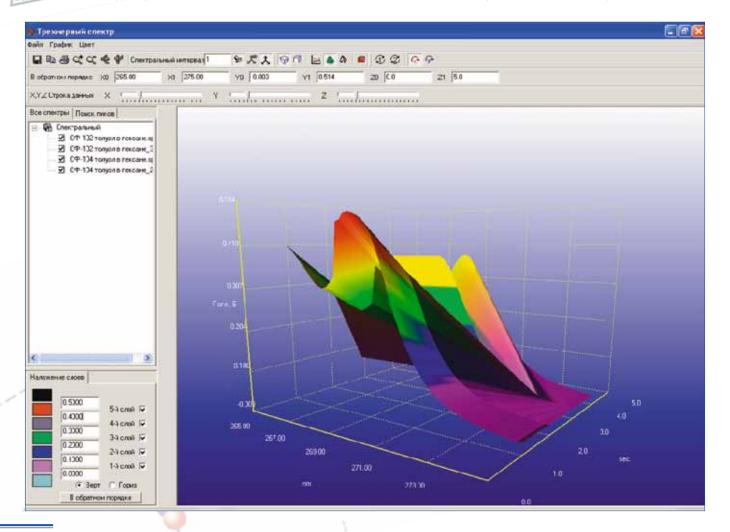


Пример спектрометрического режима для двух различных концентраций толуола растворенного в гексане приведен на рисунке справа.

Еще один пример работы — измерение концентрации определяемого вещества в исследуемых образцах. Построение градуировочной зависимости концентрации исследуемого вещества от величины поглощения производится как на одной, так и на нескольких длинах волн (до 3-х). Одновременно пользователю предоставляется возможность математической обработки полученной градуировочной зависимости. При построении графика возможно применение как метода стандартов, так и метода коэффициентов.



Представленная ниже градуировочная зависимость построена в широком диапазоне концентраций контрольного образца. Измерения для построения каждой точки графика проводились трижды, на длине волны 550нм. В качестве неизвестного образца использовался контрольный образец с известной концентрацией.


Ш

Пример режима «Кинетика» — измерение изменения величины поглощения, пропускания или отражения исследуемых образцов во времени. На графике представлен процесс седиментации окиси алюминия в водном растворе глицерина. Полученная кривая является графиком изменения во времени величины пропускания исследуемого образца.

Трехмерный спектр в виде 3D-модели на следующем рисунке — это пример работы программного обеспечения

UVWin в режиме генератора отчетов. 3D модель создается на основе нескольких полученных спектров.

** АКТИНОИДЫ

0,714

Программное обеспечение UVWin обеспечивает возможность создания, сохранения проекта исследований или повторное обращение к уже созданному проекту. Позволяет проводить математические и алгебраические действия с полученными спектрами.

Пользователь имеет возможность перенести полученные данные для обработки в Microsoft Office Excel или Microsoft Office Word.

Рекомендуемая конфигурация персонального компьютера для работы программы UVWin.

Программное обеспечение UVWin может работать на компьютере с установленной операционной системой Microsoft Windows 98/2000/XP/Vista.

- Процессор не хуже Pentium 1.4GHz
- Оперативная память не менее 256Мб
- Видеокарта с объемом памяти не менее 32Мб
- Не менее 20Мб свободного пространства на жестком диске

- CD-ROM дисковод
- 17-дюймовый цветной дисплей
- Последовательный порт RS-232 (при наличии USB порта рекомендуется приобрести переходник MOXA Uport 1110)
- Принтер
- Указательное устройство ввода «Мышь»

III

Технические характеристики спектрофотометров СФ-102 и СФ-104

группа элементов

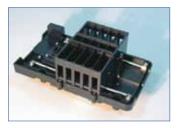
Nº	Наименование характеристики (параметра)		СФ-102	СФ-104
IN≚	паименование характери	значение		
1	Спектральный диапазон изм	от 200 до 1100	от 190 до 1100	
2	Разрешающая способность	3	2	
3	Дискретность установки дли	0,1	0,1	
4	Индикация установки длины	ы волны на экране спектрофотометра, нм	0,1	0,1
5	Пределы допускаемого знач нм	нения абсолютной погрешности установки длин волн,	±1	±1
6	Воспроизводимость установ	0,2	0,2	
	Параметры сканирования	скорость наибольшая, нм/мин	1500	750
		шаг сканирования, нм	0,2; 0,4; 1,0; 2,0; 5,0	0,1; 0,2; 0,4; 1,0; 2,0; 5,0
7		регулировка, автономная работа	четыре ступени регулировки	три ступени регу- лировки
		регулировка, под управлением UVWin	четыре ступени регулировки	четыре ступени регулировки
8	Диапазон длин волн смены	ламп, нм.	от 300 до 400	от 330 до 390
9	Оптическая схема	однолучевая с опорным каналом	однолучевая с опорным каналом	
10	Фотометрический диапазон	н измерений		
	поглощения, Б		от -0,3 до 3,0	от -0,3 до 3,0
	пропускания, %		от 0 до 200	от 0 до 200
11	Пределы допускаемого знач тральных коэффициентов шкале), %	нения абсолютной погрешности при измерении спекнаправленного пропускания (по фотометрической	±1	±1
12	Пределы допускаемого сре, ющей погрешности при изм пропускания (по фотометри	не более ±0,05	не более ±0,05	
13	Дрейф нулевого сигнала, Б,	0,001	0,002	
14	Максимальное отклонение до 1100нм, Б	±0,002	±0,002	
15	Время прогрева (при включ	ении дейтериевой лампы)	20 мин	20 мин
16	Уровень мешающего излуче	ения, %	не более 0,05	не более 0,15
17	Источники света		галогенная и дей- териевая лампы	галогенная и дей- териевая лампы
1.0	Монохроматор	тип монохроматора	Черни-Тернера	Черни-Тернера
18		разрешение дифракционной решетки, линий/мм	1200	1200
19	Детекторы, канал образца и	канал сравнения (опорный)	кремниевые фотодиоды	кремниевые фотодиоды
	Отделение для образцов			
20	внутренние размеры, мм	ı, ВхШхГ	110x130x235	110x145x183
	число позиций держател	8/5/1	8/5/1	
21	Потребляемая мощность, В	200	200	
22	Требования к электропитаны	220/50	220/50	
23	Габаритные размеры, мм	225x476x362	240x550x400	
24	Масса прибора, кг	11	27	
2 -	Venopian avenuvataura	температура окружающего воздуха, °С	от 15 до 35	от 15 до 35
25	Условия эксплуатации	относительная влажность окружающего воздуха, %	от 40 до 80	от 40 до 80

Дополнительное оборудование и принадлежности

Термостатируемый держатель кювет на пять позиций («водяная рубашка»). Обеспечивает поддержание постоянной температуры в кюветах. В качестве теплоносителя используется вода.

- Держатель предназначен для установки пяти спектрофотометрических кювет с длиной оптического пути до 10мм.
- Температурный диапазон зависит от эффективности термостата, обеспечивающего циркуляцию воды с постоянной температурой.
- Внутренний диаметр трубок подвода теплоносителя 4мм.

На рисунках представлены соответственно держатели для СФ-102 и СФ-104.


Перистальтический насос. Двунаправленный насос обеспечивает полуавтоматический отбор проб для проведения измерений с помощью проточной кюветы. Работает в двух режимах анализа: непрерывного потока пробы и фиксированного объёма пробы. Широко используется при проведении исследований и на производстве, в таких областях как химическая очистка, биофизика, биохимия, защита окружающей среды, фармацевтика и других отраслях. Применим для перекачки вязких и агрессивных жидкостей.

На рисунке модели для СФ-102 и СФ-104.

Держатель кювет с большим оптическим путем на пять позиций. Позволяет устанавливать и проводить автоматическую смену пяти кювет с оптическим путем от 5 до 100мм для СФ-102 и от 5 до 50мм для СФ-104.

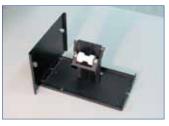
Устройство термоэлектрического термо- статирования (Пельтье). Позволяет проводить измерения в кюветах в условии термостатирования образцов. Используется

совместно с термостатируемым держателем кювет на пять позиций. Диапазон регулировки температуры: от 2 до 70°C.

Приставка зеркального отражения (угол падающего света 5°). Методика измерения зеркального отражения часто используется для определения характеристик оптических материалов и полупроводников при сравнении со стандартной отражающей поверхностью. Угол падающего света, равный 5°, сводит к минимуму влияние поляризованного света. Применение поляризационного фильтра не требуется, что упрощает проведение измерений. Размер образцов: длина от 10 до 100мм, ширина от 20 до 60мм, толщина не более 10мм.

Дос<mark>тупна только д</mark>ля СФ-104.

Держатель твердых образцов. Возможна установка образцов толщиной не более 5мм. Доступен только для СФ-104.


Поворотный держатель для твердых образцов. Поворотный держатель для твердых образцов используется для установки твердых образцов под углом к падающему лучу. Настройка угла падения луча возможна в интервале от -45° до +45°. Максимальные размеры образца 80x55x5мм. Доступен для

СФ-102 и СФ-104. На рисунке модель для СФ-104.

Держатель для цилиндрических кювет

Держатель предназначен для цилиндрических кювет с диаметром от 15 до 25 мм и высотой от 90 до 120 мм. Доступен только для СФ-104.

Программные карты. Применяются для работы соответствующих режимов спектрофотометра СФ-102.

Программная карта режима количественного анализа. Входит в комплект поставки.

Программная карта фотометрического многоволнового режима работы.

Программная карта спектрометрического/ кинетического режимов работы.

Вставка в держатель стандартных кювет для установки кювет с коротким оптиче-

ским путем. Вставка для кювет с коротким оптическим путем помещается в держатель для стандартных кювет на 10мм.

Термопринтер.

Используется для распечатки результатов: таблиц данных, спектров, кинетических кривых.

Держатель-вставка для установки кювет с коротким оптическим путем. Устанавливается в держатель для стандартных кювет на 10мм.

Держатель для микрокювет. Предназначен для установки микрокювет. Объем образца не менее 0,1 мл, длина оптического пути 10 мм. Доступен только для СФ-104.

Источники света: галогенная и дейтериевая лампы.

Кюветы

Наименова- ние	Эскиз	Модель	Длина оптического пути, мм	Размер окна, мм	Объем, мл	Размеры, мм	Оптический диапазон, нм
		SQ-1	1		0,400	12,5x3,5x45	185~2500
		SQ-2	2		0,700	12,5x4,5x45	185~2500
		SQ-5	5		1,800	12,5x7,5x45	185~2500
		SQ-10	10		3,500	12,5x12,5x45	185~2500
Кварцевые кюветы		SQ-20	20		7,000	12,5x22,5x45	185~2500
RIOBETBI		SQ-40	40		14,000	12,5x42,5x45	185~2500
		SQ-50	50		17,500	12,5x52,5x45	185~2500
		SQ-30	30		10,500	12,5x32,5x45	185~2500
		SQ-100	100		35,000	12,5x102,5x45	185~2500
		SG-1	1		0,400	12,5x3,5x45	340~2500
		SG-2	2		0,700	12,5x4,5x45	340~2500
	-	SG-5	5		1,800	12,5x7,5x45	340~2500
_		SG-10	10		3,500	12,5x12,5x45	340~2500
Стеклянные кюветы		SG-20	20		7,000	12,5x22,5x45	340~2500
RIODETDI		SG-40	40		14,000	12,5x42,5x45	340~2500
		SG-50	50		17,500	12,5x52,5x45	340~2500
		SG-30	30		10,500	12,5x32,5x45	340~2500
		SG-100	100		35,000	12,5x102,5x45	340~2500
		QS2-5	5	2	0,350	12,5x7,5x45	185~2500
		QS2-10	10	2	0,700	12,5x12,5x45	185~2500
Полу-		QS4-5	5	4	0,700	12,5x7,5x45	185~2500
микро- кюветы		QS4-10	10	4	1,400	12,5x12,5x45	185~2500
кварцевые		QS4-20	20	4	2,800	12,5x22,5x45	185~2500
		QS4-40	40	4	5,600	12,5x42,5x45	185~2500
		QS4-50	50	4	7,000	12,5x52,5x45	185~2500
	1	QF6-10	10	4x14	0,600	12,5x12,5x40	185~2500
		QF2-10	10	2x10	0,200	12,5x12,5x40	185~2500
Проточные микро-		QF1-10	10	2x5	0,100	12,5x12,5x40	185~2500
кюветы		QF3-5	5	4x14	0,300	12,5x12,5x40	185~2500
кварцевые		QF1-5	5	2x10	0,100	12,5x12,5x40	185~2500
		QF05-5	5	2x5	0,050	12,5x12,5x40	185~2500
		DM-01	0,1		0,040	12,5x2,6x45	185~2500
Микро-		DM-02	0,2		0,080	12,5x2,7x45	185~2500
кюветы		DM-05	0,5		0,200	12,5x3,0x45	185~2500
		DM-10	1		0,400	12,5x3,5x45	185~2500

НПО ИНТЕРФОТОФИЗИКА